Recent News
September 2016 — Develop Prototype for Fast Valve for Hypersonic Wind Tunnel
Safe, Inc. has been awarded a Phase I SBIR program from the United States Air Force, to develop a full-bore, quick-opening valve suitable for starting high-speed (supersonic) Ludwieg tube wind tunnels. The valve will open completely in 50 ms or less, be able to seal against 600 psi air at 450° F, and have a lifetime of at least 50,000 cycles. The design effort will include a finite element analysis of the valve components to ensure proper design/stress management and dynamic analysis of the valve opening process to ensure that the valve opening time is adequate and that the design is structurally sound.
September 2014 — Innovative Tactical Bulk Fuel Delivery System Restraint System
Safe, Inc. has been awarded a Phase I SBIR program to develop an innovative tactical bulk fuel delivery system restraint system for the CH-53K King Stallion rotorcraft currently in development for the U.S. Marine Corp. The restraint system will solve current problems of high crew workload, excessive weight, inability to meet the required retention loads when the tanks are filled to capacity, and the inability to roll fully loaded tanks on the track roller system in the CH-53K. Safe’s design will meet the Navy’s 20/20/10 G loading requirements with full tanks that can be rolled in and out of the aircraft, minimizing crew effort and fatigue, and reducing load time, while increasing operational capability, reliability, maintainability, and affordability.
September 2014 – Innovative Unified Damage Mechanisms-Based Model to Predict Remaining Useful Life for Rotorcraft Structures
Safe, Inc., in partnership with a major research University, has been awarded a Phase I STTR program to demonstrate the feasibility of using the newly developed concept of acoustic information entropy to measure material damage and predict the remaining useful life of commercially available rotorcraft alloys. Efforts to address the response of materials to damage are typically made by deterministic or probabilistic approaches through fracture mechanics (FM) and damage mechanics (DM), where a crack tip is well defined. Random damage, has, however, been largely neglected. The program’s priority will be to establish the process framework and to develop and demonstrate the feasibility of a resultant computer model that can accurately predict remaining useful life in rotorcraft components.
May 2014 — Innovative Seat Restraint Systems for Troops in Rotorcraft
Safe, Inc. has been awarded a Phase I SBIR program to develop and demonstrate innovative and advanced concepts for seat restraint systems, which will be intuitively easier and faster to use under any adverse conditions and can be readily integrated into existing forward, aft, and side-facing troop seats in military rotorcraft, while providing the necessary protection requirements to prevent injuries during crash. An easier-to-use more intuitive restraint system would not only facilitate proper use reducing aircraft-related crash injuries and deaths, but would be expected to increase the success ratio of troop extractions, which could lead to saved helicopters as well as saved lives.
September 2013 — Hands-Free, Automatic Coupling Restraint System
Safe, Inc. has been awarded a Phase I SBIR program to develop and demonstrate a hands-free, automatic coupling restraint system that would eliminate the need for the Soldier to manually connect (to), activate, disconnect (from), and de-activate the vehicle restraint system. The leading cause of injuries and fatalities in military ground vehicles can be attributed to troops not wearing seat belts during accidents, and not from combat, as would be expected. This new restraint system would significantly decrease the number of injuries and fatalities occurring among unrestrained troops.
June 2013 — Efficient Cargo and Personnel Handling System
This Phase I SBIR program will develop a replacement seating system coupled with a device to more safely and easily move cargo and personnel along the length of the US Navy C-2 Greyhound aircraft. This system is anticipated to reduce the turnaround time for carrier on-board delivery aircraft. The seating system will focus on reducing installation and removal time, reducing stowed volume and weight, and reducing the occurrence of injury to handling personnel. Safe’s goal is to develop concepts that can be utilized in the aircraft without requiring aircraft modification.
May 2013 — Life Improvement of Plain Airframe Bearings by Preventing Contamination
Safe, Inc. has been awarded a Phase I SBIR contract to develop a physical shield to protect spherical bearings from abrasive particulates, such as sand and dirt. The shield will prevent much of the contamination damage that shortens bearing life on rotorcraft. The initial effort by Safe will be to design a shield that will minimize heat build-up, reduce maintenance costs in both labor time and materiel, reduce operation costs and time lost by increasing the lifespan and dependability of critical aircraft systems. The ultimate goal of this program is to develop a shield that will minimize the impact on assembly weight, on the flexural resistance, and on the overall bulk of the assembly.
March 2019 — AS9100D Implementation & Certification
Safe, Inc. is pleased to announce that it has successfully achieved AS9100D implementation and certification. This certification confirms that the quality management system (QMS) is certified for the design, development, and manufacturing of aerospace products, with an emphasis on the integration of new technologies into safety-related products.
Additionally, this milestone reaffirms Safe’s commitment to exceeding customer expectations in quality, technology, and performance and plays an integral part in achieving the continuous improvement goals established by the organization.
AS9100D and ISO9001:2015 Certified (attached 2018-2021 certificate, PDF)
Update, 2021:
AS9100D and ISO 9001:2015 Certified (2021-2024 Certificates of Registration, from Performance Review Institute, attached PDF)
February 2012 — Crash Responsive Crew Protection Systems — Army Helicopters
Safe has received an extension of an existing contract from the Aviation Applied Technology Directorate (AATD), Fort Eustis, Virginia. The contract is part of a Multi-phase Two Step BAA contracting vehicle to support the development of improved crash protection for crews of Army helicopters.
The additional work will expand on the capability of the crash responsive technology developed by Safe in the previous phase of work. The goal is to extend the capability of current energy absorbing and restraint systems to provide crash protection in significantly more severe crashes than do current systems. The work involves modeling, analysis, design, and testing to be conducted over an 18-month time period.
Safe is teamed with AmSafe Aviation of Phoenix, AZ to provide inflatable restraint support to the program.
December 2011 — CIMan Combat Injury Manikin
This Phase I SBIR program will develop an anthropomorphic test device (ATD) (also referred to as a “test manikin” or “test dummy”), which will be used specifically for land vehicle blast testing. The Hybrid III ATD was developed specifically for automobile crash testing and to quantify the types of injuries most commonly experienced in automobile crashes. The human response to blast insult is quite different, and consequently, the automotive ATDs lack biofidelity when exposed to a blast environment.
The initial effort will apply technology developed by Adelaide Test & Evaluation Systems for a Frangible Surrogate Leg to the upper leg, pelvis, and spine for a Combat Injury Manikin (CIMan). Safe’s ultimate goal is to develop an ATD that is biofidelic, yet affordable to use in blast testing.